## Google DeepMind

# Low-Rank Adaptation for Multilingual **Summarization: An Empirical Study**



**Chenxi Whitehouse**,<sup>1</sup> Fantine Huot,<sup>2</sup> Jasmijn Bastings,<sup>2</sup> Mostafa Dehghani,<sup>2</sup> Chu-Cheng Lin,<sup>3</sup> Mirella Lapata<sup>2</sup> <sup>1</sup>University of Cambridge <sup>2</sup>Google DeepMind <sup>3</sup>Google Cloud

### Introduction

- Large Language Models (LLMs) are becoming increasingly powerful, but their growing size also makes training less practical
- Parameter-efficient fine-tuning (PEFT) approaches are desirable, especially for tasks requiring extensive memory, e.g., with long input
- Existing PEFT approaches include • Adapters • Prefix tuning • **LoRA** (Low-rank Adaptation) • We focus on a challenging task with long input: • Multilingual summarization, where LoRA is under-explored • We empirically study LoRA vs Full Fine-tuning (FT) under different data availability scenarios

### **Experiments with PaLM-2**

- **Different Data Regimes:**
- High-data
- Low-data

SEEN

• Cross-lingual Transfer (zero- and few-shot)

#### **Cross-lingual Transfer**

### **High-data Regime**

- Train on all the data available for each language
- Full FT outperforms LoRA on summary relevance (R-L). LoRA with higher ranks enhances summary relevance
- LoRA is superior on summary faithfulness (NLI) & conciseness (SH), lower ranks see better scores

|         |       | XLSum |       | XWikis |       |       |  |
|---------|-------|-------|-------|--------|-------|-------|--|
|         | R-L   | NLI   | SH    | R-L    | NLI   | SH    |  |
| Full-FT | 31.11 | 42.93 | 31.64 | 34.08  | 41.04 | 25.19 |  |
| LoRA-64 | 29.79 | 45.51 | 31.80 | 34.04  | 45.34 | 27.02 |  |
| LoRA-16 | 29.77 | 48.48 | 33.25 | 33.80  | 46.10 | 27.42 |  |
| LoRA-4  | 29.03 | 51.16 | 34.42 | 32.92  | 47.43 | 27.72 |  |

### Low-Rank Adaptation



- Freezes the pre-trained model weights (W) and adds trainable low-rank matrices (A & B) into the Transformer architecture
- No extra cost or latency at inference time
  - Can merge LoRA with the frozen parameters.

#### **Zero-shot transfer from English**

• Full Fine-tuning exhibits catastrophic forgetting

|         |         | XLSum        | l     | XWikis  |             |       |  |
|---------|---------|--------------|-------|---------|-------------|-------|--|
|         | Rouge-L | NLI Seahorse |       | Rouge-L | Rouge-L NLI |       |  |
| Full-FT | 5.20    | 4.49         | 6.88  | 17.51   | 35.95       | 22.43 |  |
| LoRA-4  | 21.13   | 39.07        | 23.08 | 23.86   | 45.54       | 25.96 |  |

Performance of average non-English languages when training on English

| Hausa                                                                                                                                                                                      | Indonesian                                                                                                                                                                 |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Target: Gwamnatin Najeriya ta ce 'yan<br>kasar sun ga irin amfani da rufe iyakokin<br>kasar ya yi a fannin tattalin arzikinta                                                              | Target: Perempuan Vietnam yang ditudin<br>terlibat dalam pembunuhan Kim Jong-<br>nam, saudara tiri dari pemimpin Korea<br>Utara Kim Jong-un, telah dibebaskan.             |  |  |  |  |
| Full FT: President Muhammadu Buhari<br>has appointed his deputy, the BBC<br>presenter and former minister, Shugaba<br>Muhammadu Buhari, as the new<br>chairman of the Presidential Council | Full FT: Kim Jong-nam, the wife of North<br>Korean leader Kim Jong-un, has died in a<br>fight with Malaysia Airlines flight MH17. Her<br>are the key points of the ruling: |  |  |  |  |
| LoRA-4: Gwamnatin Nijeriya ta<br>yi tsokacin da shawarar da zai rufe<br>iyakokin kasar.                                                                                                    | LoRA-4: Seorang wanita Vietnam yang<br>didakwa sebagai bagian dari pembunuhar<br>Kim Jong-nam, saudara tiri dari pemimpir<br>Korea Utara, telah dibebaskan.                |  |  |  |  |

#### **Zero-shot transfer from Multiple Languages**

- With multiple languages trained together, Full FT still lags behind in cross-lingual transferability
- Multilingual LoRA and Weight averaging of individual LoRA benefits different unseen languages • Lower resource languages (Kirundi, Scottish, Somali, Yoruba) work best with individual LoRA training • Similar languages may transfer better

### Low-Data Regime

- Randomly select 16, 64, 256, 1024, 4096 data per language and train together (balanced data)
- LoRA achieves overall better faithfulness (NLI) and conciseness (Seahorse) than Full FT
- For ROUGE-L, Full FT outperforms LoRA when provided > 1K training examples
- Low-data training on LoRA is more stable (Full FT more sensitive for the selection of checkpoints)



- Up to 10,000 times fewer trainable parameters • Up to 3 times less GPU memory (GPT-3)
- Competitive performance vs Full Fine-tuning (on classification or monolingual generation tasks)

#### LoraHub [Huang et al. 2023]:

- Compose individually trained LoRA modules for cross-task generalization $m_i$
- Available  $\hat{m} = \sum_{i=1}^{N} w_i m_i$ are synthesized into module

### LoRA for Multilingual Summarization

#### Multilingual Summarization is Complex:

- Models are expected to fluently generate in many languages
- High/low resource: not all languages have (sufficient) data
- Long input and output

#### Datasets & Metrics.

| • | Dataset             | XLSum              | XWikis           |
|---|---------------------|--------------------|------------------|
|   | Source              | BBC News           | Wikipedia        |
|   | Languages           | 44                 | 5                |
|   | Train/Val/Test Data | 1.1M / 114K / 114K | 1.4M / 40K / 35K |
|   | Input/Output Words  | 470 / 22           | 1043 / 64        |

|          |       |       |       |       | UNS   | EEN   |       |       |       |       |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | ΑZ    | BN    | JA    | RN    | KO    | NE    | GD    | SO    | ΤH    | YO    |
| AR       | 15.42 | 23.38 | 28.20 | 10.29 | 23.78 | 21.91 | 16.75 | 14.94 | 23.35 | 19.00 |
| ZH       | 14.46 | 22.11 | 30.85 | 8.25  | 22.33 | 22.77 | 16.02 | 14.40 | 23.12 | 16.53 |
| EN       | 15.12 | 22.24 | 28.91 | 8.90  | 23.09 | 23.43 | 15.54 | 18.30 | 22.23 | 20.85 |
| HA       | 15.67 | 22.26 | 27.49 | 10.59 | 21.90 | 22.17 | 16.20 | 18.09 | 20.47 | 19.40 |
| HI       | 13.60 | 22.71 | 28.81 | 9.75  | 21.31 | 24.96 | 18.13 | 12.90 | 22.54 | 19.30 |
| ID       | 17.07 | 23.91 | 29.41 | 10.47 | 24.82 | 23.64 | 20.66 | 19.26 | 22.94 | 19.51 |
| FA       | 10.66 | 22.15 | 27.59 | 10.19 | 20.77 | 20.68 | 16.26 | 15.86 | 22.28 | 17.62 |
| PT       | 15.05 | 22.32 | 28.13 | 7.82  | 22.84 | 22.27 | 16.78 | 15.26 | 21.34 | 18.52 |
| SW       | 17.10 | 22.69 | 28.67 | 11.87 | 24.37 | 24.84 | 18.18 | 18.74 | 21.42 | 19.49 |
| TR       | 12.16 | 21.46 | 27.49 | 9.79  | 20.30 | 20.23 | 16.78 | 15.67 | 21.71 | 18.44 |
| Full FT  | 15.89 | 5.97  | 22.61 | 13.17 | 8.45  | 21.72 | 17.92 | 12.15 | 13.17 | 13.75 |
| LoRA-4   | 19.94 | 26.25 | 32.15 | 10.23 | 26.26 | 27.38 | 19.16 | 20.26 | 25.37 | 18.87 |
| vg. LoRA | 18.22 | 23.05 | 29.71 | 16.25 | 25.03 | 24.57 | 22.67 | 21.51 | 23.42 | 22.96 |
|          |       |       |       |       |       |       |       |       |       |       |

ROUGE-L scores for 10 test languages on XLSum

#### **Few-shot transfer from Multiple Languages**

- Assume a handful target examples available (16, 64), compare LoRA continued learning (CL) and LoraHub
- LoRA continued learning superior performance
- A few examples significantly improves Full FT compared to the zero-shot results

|          | Zero-s | shot  |       | 16-shot   |       |       |       |  |
|----------|--------|-------|-------|-----------|-------|-------|-------|--|
|          | R-L    | NLI   | SH    |           | R-L   | NLI   | SH    |  |
| Full FT  | 14.48  | 28.87 | 13.71 | Full FT   | 22.31 | 30.15 | 18.79 |  |
| LoRA     | 22.59  | 37.39 | 24.21 | LoRA (CL) | 24.71 | 41.12 | 26.47 |  |
| Avg.LoRA | 22.74  | 49.14 | 32.44 | LoraHub   | 23.37 | 38.95 | 26.07 |  |

log2 of Examples per Language

### Conclusions

- LoRA achieves **superior performance** vs Full FT: • Zero-shot and few-shot cross-lingual transfer
  - Low-data regime (< 1K examples)  $\bigcirc$
  - Summary faithfulness and conciseness  $\bigcirc$
- In addition, LoRA continued learning outperforms LoraHub under few-shot settings • LoRA achieves **on-par performance** vs Full FT in larger models (see paper) • LoRA achieves **worse performance** vs Full FT: • Smaller models • High-data regime, particularly for summary relevance

#### • Compare summary **Relevance** (Rouge-L), Faithfulness (NLI), and Conciseness (Seahorse)

Zero-and 16-shot scores for average of 10 test languages on XLSum