

The 17th Conference of the European Chapter of the Association for Computational Linguistics

# Towards a Unified Model for Generating Answers and Explanations in Visual Question Answering



Chenxi Whitehouse, Tillman Weyde and Pranava Madhyastha (chenxi.whitehouse@city.ac.uk) City, University of London

May 2023

# **Motivation and Contribution**

#### Background:

- Providing explanations for Visual Question Answering (VQA) tasks is desirable
- Current explanation models for VQA generally trained separately from the QA model, resulting in less grounded answer and explanation

#### • Our proposal:

- UMAE: A **u**nified **m**odel for **a**nswer and **e**xplanation generation
- Multitask learning with single artificial prompt tokens to distinguish tasks while joint training
- Use perplexity as criteria to map open-ended generations to multiple-choice options
- SOTA explanation generation scores and promising out-of-domain performance on VQA

### **UMAE Illustration**

- Train a multimodal encoder-decoder model on mix of VQA tasks for jointly optimizing answer & explanation
- Distinguish the training instances and target output with artificial prompt tokens (e. g. <#A#>, <#E#>).
- Top and bottom examples are from A-OKVQA (<u>Schwenk et al., 2022</u>) and VCR (<u>Zellers et al., 2019</u>), respectively



# **Artificial Prompt Tokens**

- Add a single artificial prompt token at the beginning of the textual input to
  - Distinguish different datasets and tasks
    - <#A#> for generating answer, <#AE#> for explanations, <#AE#> for both answer and explanation
  - Learn the shared semantics among different tasks
- These tokens are abstract, simple yet effective
- Different from natural language prompt commonly used in seq2seq models such as T5



<#A#> What are Person1 and Person2 doing?

<#E#> What are Person1 and Person2 doing? They are having dinner together, this is because

<#AE#> What are Person1 and Person2 doing?

#### Natural Language prompts

[Provide answer and explanation ] What are Person1 and Person2 doing?

## **Perplexity as Multiple-Choice Metric**

- Map open-ended generated text to multiple-choice options
  - Limitation of existing methods using semantic embedding similarities such as Glove
  - We instead feed the same visual and textual input to the model and calculate the perplexity of each answer being generation
  - Choose the lowest perplexity option as the final answer
  - Results in better performance than mapping with generation metrics (BLEU, BERTScore)

## **Model and Datasets**

- We built on OFA, a multimodal encoder-decoder model (Wang et al., 2022)
  - Additionally extract bottom-up top-down features and attributes and feed to OFA
  - We do not use candidate answer set as OFA

#### Datasets:

- Train on three knowledge-intensive visual question answering tasks:
  - OKVQA (<u>Marino, et al., 2019</u>, question and answer)
  - A-OKVQA (answer and explanation)
  - VCR (answer and explanation)
- Out-of-domain evaluation on VQA-X (Park, et al., 2018)

#### **Experimental Results**

#### Answer Accuracy

- UMAE achieves better results than trained models separately
- Refer to the paper for more detailed scores



#### **Experimental Results**

#### Explanation Performance

- OFA zero-shot not able to follow natural language instruction to generate explanations
- UMAE achieves SOTA explanation generation on A-OKVAQA, VCR and promising out-of-domain results on VQA-X

| DATASET | MODEL                                           | e-Vil Scores   |                  |             | N-GRAM SCORES |         |        |        |       | LEARNT SCORE |
|---------|-------------------------------------------------|----------------|------------------|-------------|---------------|---------|--------|--------|-------|--------------|
|         |                                                 | S <sub>O</sub> | $S_{\mathrm{T}}$ | $S_{\rm E}$ | BLEU4         | ROUGE-L | METEOR | CIDEr  | SPICE | BERTSCORE    |
| A-okvqa | OFA*                                            | 4.44           | 56.19            | 7.90        | 0.30          | 4.45    | 3.26   | 4.82   | 4.62  | 68.64        |
|         | OFA <sub>Q-&gt;A</sub> +OFA <sub>QA-&gt;E</sub> | 35.82          | 74.32            | 48.29       | 22.18         | 48.51   | 23.56  | 86.76  | 22.46 | 85.96        |
|         | UMAE <sub>A-OKVQA</sub>                         | 37.10          | 73.97            | 50.15       | 27.61         | 52.23   | 24.06  | 104.39 | 22.88 | 87.86        |
|         | UMAE <sub>ALL</sub>                             | 37.91          | 74.59            | 50.82       | 27.35         | 52.56   | 24.83  | 101.09 | 23.33 | 88.21        |
| VCR     | e-UG                                            | 19.30          | 69.80            | 27.60       | 4.30          | 22.50   | 11.80  | 32.70  | 12.60 | 79.00        |
|         | UMAE <sub>VCR</sub>                             | 22.57          | 56.68            | 39.82       | 12.25         | 28.87   | 16.67  | 48.14  | 27.36 | 81.77        |
|         | UMAE <sub>ALL</sub>                             | 22.82          | 56.66            | 40.27       | 13.44         | 29.53   | 17.54  | 47.33  | 26.45 | 81.91        |
| VQA-X   | e-UG                                            | 36.50          | 80.50            | 45.40       | 23.20         | 45.70   | 22.10  | 74.10  | 20.10 | 87.00        |
|         | UMAE <sub>ALL</sub>                             | 31.58          | 77.65            | 40.67       | 14.63         | 35.12   | 20.29  | 50.35  | 19.13 | 85.40        |

Table 2: Explanation Scores. OFA\* is the pretrained OFA, showing the transferability of OFA for generating explanations with natural language instructions. Results with e-UG are from Kayser et al. (2021). We show the best results of A-OKVQA and VCR in bold. The last row in blue shade shows *out-of-domain* performance.

# Conclusion

- Jointly optimising answer and explanation improves quality in both in VQA
- Artificial prompt tokens is a simple and effect addition to the training data to boost multitask learning
- Perplexity as multiple-choice options metric outperform other metrics based on evaluating similarities
- We also discuss dataset quality limitation in the paper

# Thank you!

9