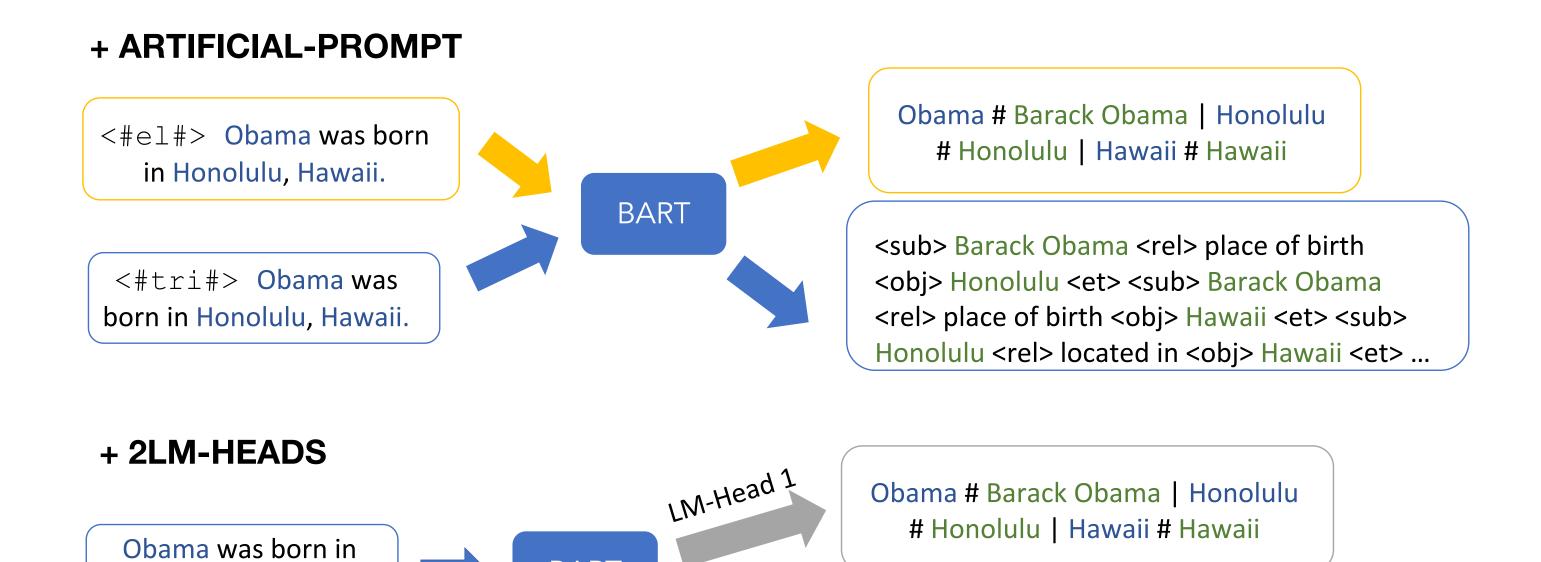


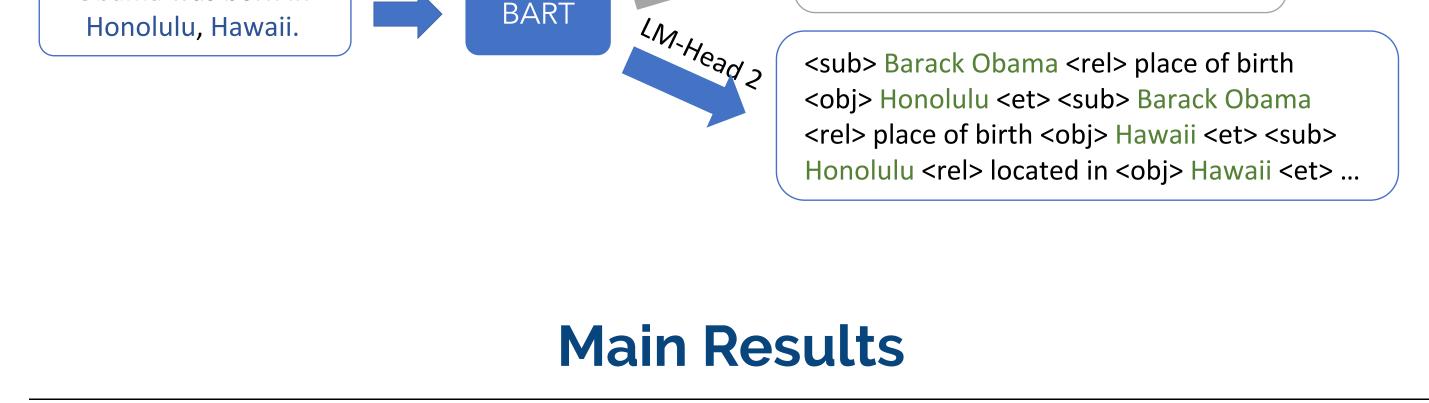
WEBIE: FAITHFUL AND ROBUST INFORMATION EXTRACTION ON THE WEB


Chenxi Whitehouse^{1,2}, Clara Vania², Alham Fikri Aji², Christos Christodoulopoulos², Andrea Pierleoni²

¹ City, University of London ² Amazon Alexa AI, Cambridge, UK

Introduction

- Information Extraction (IE) is essential for many NLP tasks (KB construction, QA, etc.)
 - Existing IE datasets mostly based on Wikipedia, not applicable for the general web domain where the text is noisy or does not contain fact triples
 - Generative models trained those datasets tend to hallucinate and produce a high rate of false positive
- We present WeblE, the first large-scale, entity-linked IE dataset collected from C4, with a subset annotated by humans and translated to four other languages, and includes negative


examples to better reflect the data on the web

- We propose several training strategies including jointly training Entity-Linking as an auxiliary task for generative IE, and benchmark with different decoding methods e.g. constraint Trie
- Experimental results show the necessity for training on WebIE for faithful and robust generative IE on the web

WebIE Collection

- Source: 1M document randomly sampled from the most frequent 200 domains in AllenAI-C4
- Human annotation via crowdsourcing on a subset of WebIE, translation to French, Spanish, Portuguese, and Hindi
- Add negative examples (50% of the instances)

- Benchmark beam search and constraint decoding with prefix Trie.
- Multilingual WebIE evaluates cross-lingual transfer performance.

Model	WebIE (anno. test)				REBEL			Wiki-NRE		
	Precision	Recall	F1	AccNeg.	Precision	Recall	F1	Precision	Recall	F1
Bart _{rand} (r)	11.82	15.63	13.46	0.00	66.89	70.37	68.58	27.61	66.73	39.06
Bart _{plm} (r)	15.98	34.92	21.93	0.00	66.28	76.78	71.14	25.39	77.45	38.24
Bart _{rand} (w)	52.95	46.60	49.57	95.04	27.47	23.13	25.12	18.98	43.75	26.48
Bart _{plm} (w)	57.00	65.91	61.13	94.18	35.81	43.00	39.08	24.30	78.01	37.06
Bart _{rand} (r+w)	51.89	54.28	53.06	93.71	66.87	72.24	69.45	29.02	82.35	42.91
Bart _{plm} (r+w)	55.22	71.25	62.22	82.59	66.42	78.29	71.87	29.25	86.38	43.70

Table 1. Results on WebIE, REBEL, WikiNRE (latter two are based on Wikipedia). The blue shade indicates zero-shot performance.

Statistics of WeblE:

Web Domains	200	Total Triples	1.91M
Relation Types	661	Human Annotated Triples	21.1K
Sentences	1.65M	Negative Instances	50%
train/val/test split	90/5/5	Languages (test set)	5

Training Strategies

Primarily benchmark generative models on WebIE

BART

 Standard training with BART (and mBART) and joint training with Entity-Linking as an auxiliary task

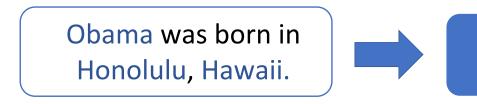

Model	R	EBEL		WebIE (anno)			
Model	Precision	Recall	F1	Precision	Recall	F1	
Bart _{rand}	66.89	70.37	68.58	52.95	46.60	49.57	
Entity-prompt	67.91	67.54	67.72	51.90	54.28	53.06	
Artificial-prompt	66.41	70.72	68.50	53.86	48.18	50.86	
2lm-heads	67.05	70.88	68.91	51.07	49.59	50.32	

Table 2. Entity linking as an auxiliary task with constraint Trie decoding.

Language	Precision	Recall	F1	Empty-Pos.%	Accuracy-Neg.
English	60.29	64.29	62.22	2.63	96.11
French	46.52	40.26	43.16	12.63	96.64
Spanish	45.13	38.89	41.78	12.80	96.97
Portuguese	44.15	36.61	40.02	14.82	97.22
Hindi	4.23	1.67	2.40	67.55	98.64

Table 3. Performance on mWebIE with mBART. Results for non-English are zero-shot. Empty-Pos(itive)% shows *false* negatives, revealing zero-shot performance has a high rate of empty results for positive examples.

Conclusions

<sub> Barack Obama <rel> place of birth <obj> Honolulu <et> <sub> Barack Obama <rel> place of birth <obj> Hawaii <et> <sub> Honolulu <rel> located in <obj> Hawaii <et> ...

+ ENTITY-PROMPT

[ENTITY] Obama # Barack Obama | Honolulu # Honolulu | Hawaii # Hawaii [TRIPLE] <sub> Barack Obama <rel> place of birth <obj> Honolulu <et> <sub> Barack Obama <rel> place of birth <obj> Hawaii <et> <sub> Honolulu <rel> located in <obj> Hawaii <et> ...

Models trained on WeblE are more generalisable

WebIE is necessary for faithful Information Extraction on the web

 WebIE serves as a complementary dataset for existing Information Extraction datasets based on Wikipedia

Entity-linking as auxiliary task improves generative Information Extraction results and offers more explainability

 Zero-shot crosslingual transfer still challenging especially for non-Latin script languages i.e. Hindi

The 61st Annual Meeting of the Association for Computational Linguistics (ACL 2023)

